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Abstract
Biglycan, a member of small leucine-rich repeat
proteoglycan family, expresses on the skeletal muscle
surface and provides a critical link between the basal lamina
and the cytoskeleton. As one of the extracellular matrix
protains, the glycosaminoglycan-binding form of biglycan is
concerned with a linkage to the actin cytoskeleton and
thereby contributes to synaptic stability. In addition, as
confirmed by the mutation experiment, the non-glycanated
form of biglycan links to the muscle-specific tyrosine kinase
(MuSK) extracellular domains (immunoglobulin-like domain
1 (Ig1 domain, mediating agrin-signaling) and cysteine-rich
domain (CRD, mediating Wnt-signaling)) which constitute
the postsynaptic receptive complex in cooperation with
low-density lipoprotein receptor-related protein 4 (Lrp4), so
that this form takes part in the rapsyn-anchored
acetylcholine receptor clustering and possibly in the trans-
synaptic communication mediated by Lrp4 and MuSK CRD.
In the manner similar to the collagen Q-acetylcholinestease
(AChE) complex, the linkage of biglycan with AChE
contributes to the localized sensitivity to acetylcholine at
the postsynaptic membrane. Since biglycan is an important
constituent of the extracellular matrix positioned as the the
MuSK-binding protein responsible for synaptic function, it is
worth investigating to determine whether biglycan could be
directly targeted by a humoral immune response. The
antibody assay of biglycan was done in the serum samples
from myasthenia gravis (MG) patients positive for
antibodies against MuSK Ig1/2 domains and CRD, but we
obtained negative results. However, taking the linkage of
biglycan with MuSK into consideration, the MuSK antibodies
in MG may cause an impairment in the synaptic stability
based on the MuSK-linked biglycan, in addition to a
misalignment in the pre- and post-synaptic functional
organizations. We also briefly discuss about biglycan as a
molecule regulating the multifunctional proinflammatory
signaling and also participating in the MG thymus pathology
(hyperplastic change) on one hand, and a molecule to
counter the pathologies in skeletal muscle and bone
formation on the other hand. The present review points out
both signaling and structural roles of biglycan which has
relations with MuSK function.
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Introduction
Function of the neuromuscular junction requires a complex

architecture formed by a diversity of elements through signals
orchestrated by sophisticated interactions. The muscle-specific
tyrosine kinase (MuSK) is uniquely positioned as a key protein in
this network particularly in relation to acetylcholine receptor
(AChR) clustering and pre- and post-synaptic differentiations.
The fine synaptic organizations centered on MuSK and related
proteins are stabilized by extracellular matrix proteins for
efficient synaptic transmission. The present review focusses
biglycan which is a proteoglycan acting not only as a matrix
protein but also as a signaling protein by its linkage to MuSK.
The discussion makes reference to the myasthenia gravis (MG)
positive for antibodies against MuSK paying attention to the
synaptic transmission and also to the linking of MuSK with
extracellular matrix. Additonally discussed is that biglycan acts
as a proinflammatory stimulus when it is in a soluble form, and
also plays a role in hyperplastic change of MG thymus in which
biglycan is produced from myoid cells, whereas biglycan has a
beneficial effect on dystrophic muscles and bone formation.

The Neuromuscular Synapse: Functional
Structure and Disease

MG, an autoimmune neuromuscular junction (NMJ) disorder
characterized by fatigable weakness of voluntary muscles
including ocular, facial, oropharyngeal, limb and respiratory
muscles, is a disease of the postsynaptic NMJ where AChRs are
recognized by autoantibodies (complement-activating IgG 1 and
IgG 3) in ~85% of the MG patients [1]. In an effort to clarify the
remaining and/or concomitant pathogens in MG, the search for
other pathogenic antigens has detected the antibodies against
MuSK (IgG4, independent of complement-activation) and Lrp4
(IgG 1) [2-17], both causing pre- and pos-tsynaptic impairments
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as confirmed in the animal models by active immunization
[6-9,14]. Agrin has also been suggested as a fourth pathogen in
MG [18,19].

Acetylcholine (ACh)-mediated neuromuscular transmission
requires the highly coordinated structures constructed by the
assembly of presynaptic ACh-release machineries where the
active zone, synaptic vesicle proteins and Ca2+ channels are
included [20-23], and the postsynaptic receptive complexes
including rapsyn-anchored AChR clusters, MuSK and
acetylcholinesterase (AChE) [24]. The postsynaptic structure is
organized by nerve-secreted or muscle-bound proteins such as
agrin (heparan sulfate glycoprotein) and Wnts (belonging to
Wingless-type integration site family of glycoproteins); the
agrin- and Wnt-signalings are mediated via interaction with
MuSK where low-density lipoprotein receptor-related protein 4
(Lrp4) acts as a recetor/coreceptor (Figure 1) [24]. The agrin-
signaling acts through MuSK immunoglobulin-like domains 1 and
2 (Ig1/2) to form full-sized AChR clusters in the innervated stage
of muscle membrane (Figure 1) [25-30]. In the non-innervated
stage of muscle membrane, the Wnt-signaling acts through
MuSK cysteine-rich domain (CRD) and Dishevelled scaffolding
protein (Dvl) to contribute to the prepatterning of AChR cluster
formation at the central part of muscle membrane where
incoming axons are guided (Figure 1) [31-34]. Reportedly, the
MuSK CRD is sufficient to interact with Wnts as shown by that
the deletion of the CRD significantly attenuated the Wnt-binding
activity of MuSK; however, this CRD deletion did not completely
abolish the Wnt-binding to mouse MuSK, suggesting that there
may be a possible involvement of other domains of MuSK in
binding to Wnts [31].

The Wnt/Lrp4/MuSK CRD signaling participates in the process
of synaptic homeostasis as the retrograde signal from muscle to
nerve by way of Dvl, muscle β-catenin (via inhibition of glycogen
synthese kinase 3β) and slit2, and also via Vangl2-dependent
non-canonical pathway (Figure 1) [35-39]. The muscle-derived
Lrp4 interacts with an Lrp4-binding protein in motor neurons
and thereby acts as the retrograde signal to promote
presynaptic differentiation (Figure 1) [40,41]. These signals
enable the nerve terminal (active zone, synaptic vesicle pool and
Ca2+ homeostasis) to, at least in part, compensate postsynaptic
dysfunction. The MuSK- and Lrp4-mediated retrograde
signalings could be impaired by the antibodies against MuSK and
Lrp4 as suggested by the fact that the compensatory ACh release
upregulation does not occur in MuSK antibody-positive MG
animal model [6-9] and Lrp4 antibody-positive MG animal model
[14].

To contribute to efficient synaptic transmission at the NMJ,
the postsynaptic structures are stabilized to be precisely
opposed to the nerve terminal by actin dynamics [42-45]. The
constituents contributive to postsynaptic stabilization include
extracellular matrix proteins (such as collagen Q (linked with
perlecan) [46] and biglycan [47,48]), ErbB receptor linked with
neuregulin 1 (via α-dystrobrevin 1) [49], Dok7 downsteam
effectors (CrkL-Sorbs1/2) [50,51], and laminin-network
(including laminins α4, α5 and β2 and muscle agrin (differently
from neural agrin, muscle agrin lacks 4 amino acid insertion at

the A/y splicing site and 8, 11 or 19 amino acid insertion at the
B/z splicing site in the laminin-like G3 domain of C-terminal
segment)) (Figure 1) [42-45,52,53]. Regarding Dok7, besides the
above-mentioned contribution to synaptic stability, this
cytoplasmic adaptor protein plays a crucial role in MuSK
activation as an inside-out ligand for MuSK and in early AChR
cluster formation via downstream effectors (Crk/CrkL: CT10
regulators of kinase) (Figure 1) [50,51,54].Regarding laminin β2,
its contribution to synaptic stabilization directs not only to the
postsynaptic structure, but also to the nerve terminal via
tethering presynaptic voltage-gated Ca2+-channels to active zone
and cytoskeletal elements (Figure 1) [52,53]. Regardnig collagen
Q and biglycan, they act as extracellular matrix to stabilize the
postsynaptic organization including AChR clusters, MuSK and
AChE in the synaptic basal lamina of the NMJ, and also to link
with MuSK ectodomain (agrin signal-mediating Ig1 domain and
Wnt signal-mediating CRD) (Figure 1) [38,39,47,55]. In MG, it is
assumed that the MuSK antibodies may cause the impaired
synaptic function by the disturbed MuSK-linking to collagen Q. In
fact, the in vitro binding assay showed that MuSK antibodies
blocked the collagen Q-MuSK linkage [56]. However, it is only in
a small number of MG patients that collagen Q was directly
targeted by antibodies [57,58]. This result calls our attention to
the possibility that the MG patients’ sera would harbor the
antibodies which directly recognize an another matrix protein,
biglycan.

Focusing Biglycan and Muscle-Specific
Tyrosine Kinase (MuSK) from the
Biological and Immunological Points of
View

Biglycan, which is one of the proteoglycans and is enriched in
the postsynaptic membrane, is a ubiquitous structural
component of the extracellular matrix, and acts as a signaling
molecule [47,48]. At the junctional region, the
glycosaminoglycan-binding form of biglycan mediates its binding
to extracellular α-dystroglycan; the β-type of dystroglycan is the
transmembrane protein binding to rapsyn for firmly anchoring
AChR clusters at the postsynaptic membrane and also binding to
the dystrophin/utrophin-associated protein complex linked to
cytoskeleton for synaptic stability. The non-glycanated form of
biglycan (lacking glycosaminoglycan side chains) directly
interacts with the MuSK extracellular domains of MuSK (agrin/
Lrp4-mediating Ig1 domain [25-30] and Wnt/Lrp4-mediating
CRD) (Figure 1) [31-34]. The biglycan-mediated signals
participate in the localized stabilization of AChR clusters, MuSK
and AChE at the synapse [47]. The evidence that the two sites of
MuSK ectodomain bind biglycan suggests a possible
participation of this matrix protein in reinforcing a functional
bridge between the agrin-signaling (via Ig1 domain) and Wnt-
signaling (via CRD) [59]. The synaptic homeostasis depends on a
wide variety of retrograde signals (from muscle to nerve) [24] in
which the muscle Lrp4-originated signal [40,41] and the Wnt
(such as Wnts 4 and 11)-MuSK CRD signal [37-39] are included
(Figure 1).
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Figure 1: Schematic presentation of the mechanisms contributive to synaptic stability by extracellular matrix protains and the
acetylcholine receptor (AChR) cluster formation by the signalings via muscle-specific tyrosine kinase (MuSK). The stability of
rapsyn-anchored AChR clusters, MuSK and acetylcholinesterase (AChE) at the postsynaptic membrane is modulated by the
extracellular matrix proteins (including biglycan, collagen Q, perlecan and α-dystroglycan) and by the laminin-network including
laminins (α4, α5 and β2) which interacts with muscle agrin. The interaction of the extracellular matrix with transmembrane β-
dystroglycan leads to the binding to rapsyn for anchoring AChR clusters at the endplate membrane and also the binding to
dytrophyin/utrophin-associated protein complex linked to actin cytoskeleton for synaptic stability. Regarding biglycan, its
glycosaminoglycan-binding form contributes to the synaptic stabilization via the interaction with dystroglycans; its non-
glycanated form directly interacts with immunoglobulin-like domain 1 (Ig1) and cysteine-rich domain (CRD) of MuSK. The binding
of collagen Q and biglycan with MuSK extracellular domains may lead to their implication in reinforcing a functional bridge
between the agrin/Lrp4-signaling and the Wnt/Lrp4/Disahevelled (Dvl)-signaling. The cytoskeletal dynamics to stabilize the
postsynaptic organization is also brought about by the Dok7-signaling mediator, CrkL-Sorbs1/2 (downstream effects of Crk/CrkL
(adaptor proteins which act as CT10 regulators of kinase participating in AChR cluster formation; Dok7 itself acts as an inside-out
ligand for MuSK)), and the α-dystrobrevin (mediator of the neuregulin 1 (NRG1)-ErbB (receptor tyrosine kinase of EGF family)
interacting signal). Cortactin acts as a regulator of actin polymerization via actin-related proteins 2/3 complex (Arp2/3 complex)
[87]. Coronin 6 contributes to firm AChR clustering via the modulation of actin dynamics [88]. In the right lower part, the two
signalings are depicted: agrin/Lrp4-MuSK Ig1/2 domains and the Wnt/Lrp4-MuSK CRD-Dvl to form AChR clusters.; the crosstalk
between agrin- and Wnt-signalings (both including Lrp4) thereby contributes to the development of vertebrate NMJ. In the
manner similar to Lrp4 and laminin β2, the Wnt-MuSK CRD-Dvl signaling acts as the retrograde signal (Wnt canonical pathway via
β-catenin and also non-canonical pathway) which contributes to the active zone organization for conditioning the ACh-release
probability in the nerve terminal.

MuSK antibodies have been shown to have heterogeneity in
their binding to MuSK functional domains such as Ig1/2 domains
(mediating the agrin-signaling) and CRD (mediating the Wnt-
signaling) in MG (Figure 2) [60,61]. Since biglycan becomes
incapable of linking to MuSK by mutations of Ig1 domain and

CRD [47], the interaction between MuSK and biglycan is
potentially blocked by MuSK antibodies in the manner similar to
the block of the MuSK-collagen Q linkage by MuSK antibodies
[56].
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Figure 2: Left: Clinical and immunological profiles of 33 myasthenia gravis (MG) patients positive for anti-muscle-specific
tyrosine kinase (MuSK) antibodies and negative for anti-acetylcholine receptor (AChR) antibodies. Right: Examples of
immunoblotting. Group A, patients 1-10 who are antibody-positive for both MuSK immunoglobulin-like 1/2 domains (Ig1/2) and
cysteine-rich domain (CRD); Group B, patients 11-33 who are antibody-positive for MuSK Ig1/2 domains but antibody-negative for
MuSK CRD. Gender: M, male; F, female. MGFA, Myasthenia Gravis Foundation of America (grades [89]). +, positive for antibodies;
-, negative for antibodies. The study collected 33 MG patients who were anti-MuSK-positive antibodies (determined by the
standard radioimmunoassay, RIA, using the full-length of MuSK antigen; control, <0.05 nM), and anti-AChR–negative antibodies
(determined by standard RIA; control, <0.2 nM). Immunoblotting for antibodies directing against MuSK and biglycan was done
using recombinant proteins of the human MuSK Ig1/2 domains and human MuSK CRD (respectively expressed in HEK 293F cells
by us [60]), and the non-glycanated form of human biglycan (expressed in HEK 293F cells (ab151798, abcam, USA)).
Immunostained reactivity was tested with serum samples (1:500 dilution) from MG patients at 5 μg recombinant proteins (MuSK
Ig1/2 and MuSK CRD)/lanes and at 5 μg recombinant protein (biglycan)/lane. The confirmation of immune reactivity was done by
using mouse anti-human MuSK monoclonal antibodies (ab86456, abcam, USA, for anti-MuSK Ig/2 domains and ab55549, abcam,
USA, for anti-MuSK CRD), and by using mouse anti-human biglycan monoclonal antibodies (ab54855, abcam, USA) for anti-
biglycan (mono Ab). In the determination of MuSK antibodies, 22kDa and 38kDa immunostained bands were visualized as anti-
MuSK Ig1/2 domains and anti-MuSK CRD in the sample from group A patient, and visualized as anti-MuSK Ig1/2 domains alone in
the sample from group B patient (right upper part) (confirmation was done by the same migration position as those of
corresponding monoclonal antibodies (data not shown)) [60,90], whereas no staining was seen at the migration position
corresponding to that of the anti-biglycan monoclonal antibodies in the samples from group A and group B patients (right lower
part).

We therefore studied the serum samples from MuSK
antibody-positive MG patients (33 patients positive for
antibodies against Ig1/2 domains, and 10 of them positive for
anitbodies against both Ig1/2 domains and CRD) [60] to
determine whether they would contain the antibodies against
biglycan, but we obtained negative results (Figure 2); the results

were also negative in 10 healthy controls and 10 disease
controls with AChR antibody-positive MG (data not shown).

Different subtypes of MG have been studied in terms of the
pathophysiology including antibody profile, thymic pathology,
gene polymorphism for auto-antigen and immune-modulating
proteins (such as autoimmune regulator (AIRE) and cytotoxic T
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lymphocyte-associated protein 4), HLA profile, key mediators in
the immunoregulatory processes (microRNAs), the age at onset,
sex hormones and environmental factors (viruses, gut microbes
and drugs) [62-70]. In the MuSK antibody-positive MG, the
following immunological points have been postulated below:

(1) Significant association with HLA-DR14-DQ5 (specific HLA
alleles may vary with disease subtype and racial difference)
[71,72].

(2) Reduction in B10 cells which block Th1 and Th17 immune
reactions, suggesting the breakdown in immune tolerance
[73-75].

(3) The disease-specific enrichment of circulating let-7 family
microRNA [76].

These immunological conditions may give us an information
to understanding the pathophysiology of MuSK antibody-
positive MG. However, it remains to be clarified if the
immunological, genetic and environmental factors could reflect
on the heterogeneity of MuSK antibodies in binding to MuSK
functional domains which include the targets to participate in
the linkage of MuSK with extracellular matrix (biglycan and
collagen Q).

Although biglycan is not directly targeted by autoantibodies in
the NMJ as is suggested above, it is of note that biglycan
stimulates multifunctional proinflammatory signaling linking the
innate to adaptive immune systems when it is in a soluble form;
this is based on that biglycan is capable of clustering several
types of pathogen recognition receptors and orchestrating their
signaling [77-79]. Reportedly, biglycan acts as a danger signal
that activates the NLRP3 (NLR family, pyrin domain containing 3)
inflammasome via Toll-like and purinergic P2X receptors
[48,77-79]. In MG, biglycan produced in thymic myoid cells was
shown to play a role in generation and maintenance of the
hyperplastic change of MG thymus [80,81]. On the other hand,
biglycan regulates the localization of the dystrophin/utrophin-
associated protein complex at the sarcolemma and thereby
counters dystrophic pathology in skeletal muscles [48,82-85].
Also, biglycan stimulates the bone formation process through
the bone morphogenic protein/transforming growth factor-β
signaling and the canonical Wnt/β-catenin-mediated-pathway
[48,86].

Conclusion
Biglycan, an extracellular matrix protein, acts as a signaling

molecule in the skeletal muscle through the linking to the MuSK
extracellular domains (contributing to agrin- and Wnt-signalings
to form rapsyn-anchored AChR clusters and trans-synaptic
communication) and through the linking to the actin
cytoskeleton (contributing to synaptic stabilization via
dystroglycans). The localized sensitivity to ACh in the
postsynaptic membrane is brought about by the stabilized AChE
distribution based on the linkage of biglycan with AChE as well
as the mechanism based on the collagen Q-AChE complex.
These signaling cascades are potentially interrupted by the
impairment of biglycan-MuSK linkage caused by anti-MuSK
antibodies in MG, although our study showed that biglycan is

not directly targeted by antibodies. Also, when biglycan is in a
soluble form, it acts as an endogeneous ligand of innate
immunity receptors to promote proinflammatory signal and also
participates in hyperplastic change of MG thymus where
biglycan is produced from myoid cells. On the other hand,
skeletal muscle and bone pathologies are renovated by biglycan.
We must see both faces of biglycan from the immunological and
biological standpoints of view.
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