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Abstract
The immune system plays a critical role in tumor
surveillance and cancer prevention. However, some
cancer cells can evade immune destruction by acquiring
the ability to inhibit immune checkpoint regulatory
pathways and suppress anti-cancer immune responses. In
recent years, the immune checkpoints took center stage in
cancer immunotherapy and several promising strategies,
based on the intervention in immune checkpoint-
regulated pathways, have been designed in order to
overcome mechanisms of immunosuppression. Clinical
studies, using anti-inhibitory immune checkpoint-receptor
antibodies, demonstrated durable clinical responses even
in patients with advanced cancer. However, the clinical
benefit was limited to a subset of cancer patients.
Furthermore, the immune checkpoint therapy, which
unleashes the immune system in order to augment the
anti-cancer immune response, also increases the
incidence of autoimmune diseases and induces an array of
immune-related adverse effects. Here we briefly discuss
some of the pros and cons of immune checkpoint-directed
immunotherapy.
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Description
One of the most promising approaches for cancer therapy

involves the manipulation of immune checkpoint receptors,
which consist of a number of stimulatory and inhibitory cell
surface proteins that are critical for the regulation of immune
cell functions.

Under normal physiological conditions, immune checkpoints
are implicated in the initiation of immune responses and
determination of the intensity and duration of the response.
As such, they operate to limit collateral tissue damage during
anti-microbial immune responses. More important, they
maintain self-tolerance and are critical for the prevention of
autoimmune diseases.

Recent studies indicated that cancer cells could evade
immune destruction by acquiring abilities to inhibit immune

checkpoint pathways and suppression of anti-cancer T cell
responses. More specifically, immune checkpoint receptor-
expressing tumor infiltrating lymphocytes were found to
interact with their cognate ligands on the surface of the tumor
cell thereby undergoing local, selective immunosuppression at
the tumor microenvironment [1]. Based on these
observations, antibodies (Abs) were designed to downregulate
the inhibitory immune-checkpoint receptors, and there in vivo
administration was found to unleash effective anti-tumor
immunity. Clinical studies demonstrated that such Abs could
induce durable clinical responses even in patients with
advanced cancer [2,3].

The cytotoxic T lymphocyte associated antigen-4 (CTLA-4;
CD152) is the most studied immune-checkpoint receptor in the
context of cancer immunotherapy and the first immune-
checkpoint receptor to be clinically targeted [4-6]. It is a potent
negative regulator of T cell responses which counteracts the
activity of the costimulatory receptor CD28. CTLA-4 and CD28
share the B7.1 (CD80) and B7.2 (CD86) ligands, but a higher
affinity of CTLA-4 allows it outcompete CD28 in ligand binding
and delivery of inhibitory signals to the T cells [7,8]. Thus,
while cytotoxic T lymphocytes (Tc) can identify and destroy a
large variety of cancer cells, signal delivery via the CTLA-4
surface receptor downregulates Tc functions and their ability
to eradicate cancer. Nevertheless, a monoclonal antibody
(mAb), which blocks CTLA-4, termed Ipilimumab, was found to
turn off this inhibitory signal and allow the cytotoxic T cells to
destroy cancer cells. Ipilimumab (trade name Yervoy™, a
human IgG1 mAb) was the first to demonstrate survival benefit
for patients with metastatic melanoma [6]. It received U.S.
Food and Drug Administration (FDA) approval for melanoma
treatment in 2011, and is currently under clinical trials in
various types of tumors, including lung carcinoma, bladder
cancer and metastatic hormone-refractory prostate cancer.

Programmed death-1 (PD-1; CD279) is the second immune-
checkpoint receptor that emerged as a promising target for
immunotherapy. PD-1 is expressed on T cells and a variety of
other types of immunocytes and plays a major role in down
regulating inflammatory immune responses to infection and
inhibition of autoimmune responses [4]. High expression of
PD-1 was noted on tumor infiltrating lymphocytes [9] and
regulatory T cells (Tregs) [10], and PD-1 ligands, including PD-
L1 (B7-H1; CD274) and PD-L2 (B7-DC; CD273), were found on
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the surface of multiple cell types, including dendritic cells,
monocytes and macrophages. The expression of PD-1 ligands
on T-, B-, NK-, and dendritic-cells, as well as, epithelial cells and
vascular endothelial cells is upregulated during inflammatory
responses, predominantly by the effect of interferon [11,12].
The high expression of PD-1 ligands, in general, and in the
tumor microenvironment in particular, suppresses Tc
functions, and allows cancer cells to evade immune
surveillance [13-15].

To test whether blocking of the PD-1/PD-L pathway will
impact on anti-tumor immunity, PD-1-specific Abs were
administered to patients with advanced melanoma. A
significant overall survival improvement was observed is
several independent studies. Two of the anti-PD-1 mAbs,
pembrolizumab (Keytruda, a humanized mAb) and nivolumab
(Opdivo a human IgG4 mAb), received FDA approval in 2014,
and studies are in progress in order to test their effectiveness
in different cancer diseases.

A similar strategy to target PD-L1 was tested in squamous
and non-squamous non-small-cell lung cancer (NSCLC) and
bladder cancer patients, and initial results of clinical trials,
using durvalumab (anti-PD-L1 IgG1; MEDI4736) and
atezolizumab (anti-PD-L1 IgG1; MPDL3280A) demonstrated a
limited durable benefit [16,17].

Immunocytes express additional types of inhibitory
immune-checkpoint receptors, such as the B- and T-
lymphocyte attenuator (BTLA; CD272), lymphocyte activation
gene-3 (LAG-3; CD223), T-cell immunoglobulin (Ig) domain and
mucin domain 3 (TIM-3), and the killer-cell immunoglobulin-
like receptor (KIR) [18,19]. Some of the inhibitory immune
checkpoint receptor-ligands were found to be selectively
upregulated in certain types of cancer cells. Attempts to block
these receptors and their cognate ligands in order to augment
anticancer immune responses are in progress.

The clinical use of Abs against negative checkpoint
regulators represents a new and novel approach in cancer
immunotherapy since the targets of the Abs are receptors on T
cells that regulate their biological activity, rather than tumor
cell-specific target molecules. In addition, the anti-immune
checkpoint receptor Abs do not activate T cell responses
against specific tumor antigens, but remove inhibitory
pathways that block effective T cell responses against multiple
types of tumors. While the immune checkpoint therapy
represents an important weapon against cancer, unfortunately,
it elicits long-term remission of tumors only in a fraction of the
cancer patients. This is likely to reflect the large genetic and
phenotypic heterogeneity existing between tumors and among
cells within individual tumors, as well as the enormous genetic
polymorphism prevailing among people, which determines not
only the susceptibility to various diseases, but also the ability
to respond to drugs and recover. In an attempt to overcome
some of these difficulties, ongoing studies will be aimed to
identify predictive biomarkers that will help select optimal
therapies to individual cancer patients. Additional information
on regulatory pathways that control T cell functions will help
identify new drug targets, while a combination therapy which
targets distinct immune cell types and intervenes at different

stages of the immune response is likely to provide an overall
survival benefit for a greater number of patients.

Despite the proven effectiveness of immune checkpoint-
based immunotherapy in a range of cancer diseases, these
new treatment modalities came with a price. The intervention
in the normal physiological regulation of T cells has led to
immune dysfunction and an increase in the incidence of
autoimmune diseases.

As indicated earlier, CTLA-4 is an important attenuator of T
cell activation and an essential component of the regulatory
system that controls peripheral tolerance [20,21]. Direct
linkage of CTLA-4 to autoimmunity was clearly demonstrated
in germline Ctla4-deficient mice, which developed a T cell-
mediated autoimmune lymphoproliferative disorder
associated with splenomegaly, lymphadenopathy, growth
retardation, and early death [22,23]. In addition, a blockade of
CTLA-4 in various mouse models of autoimmunity led to
exacerbate autoimmune responses [24-26], while genetic
evidence provided a further link between Ctla4 and an array of
human autoimmune diseases [26,27].

Mice with a restricted germline deletion of Ctla4 in Tregs
suffered from T cell-mediated autoimmune symptoms, which
resembled those observed in Ctla4-deficient mice [28].
Although some studies support a role for CTLA-4 in Treg
suppressor activity [29,30], others demonstrated that Ctla4-
deficient Tregs are capable of suppressing certain autoimmune
diseases [31,32] suggesting that CTLA-4 might be involved in
selective Treg functions that predispose hosts to autoimmune
diseases [33].

The entire spectrum of side effects induced by anti-CTLA-4
Abs, as well as by Abs directed against other co-inhibitory
immune checkpoint receptors, is referred to as ‘immune-
related adverse events’ (irAEs). The frequency and type of irAE
symptoms varied in clinical trials, depending on the nature of
the target molecule and the patient cohort, the type and
amount of Ab, as well as the particular protocol, and involved
a range of tissues and organs. These symptoms led to
dermatitis, enterocolitis, hepatitis, and wide spread
endocrinopathies (hypophysitis, thyroiditis, adrenal
insufficiency), with less frequent symptoms of uveitis,
nephritis, arthritis, and inflammatory myopathy [6,34,35].

These autoimmune-like side effects are likely to reflect the
immune tolerance breaking by the CTLA-4 (or other co-
inhibitory receptor) blockade, since these symptoms tend to
resolve upon cessation of Ab treatment. Unfortunately, the
development of autoimmune symptoms did not correlate with
health improvement and/or tumor regression in anti-CTLA-4/
anti-PD-1-treated cancer patients, indicating that they cannot
serve as valid predictors of treatment outcome.

Immune checkpoint therapy has also been considered in
autoimmune diseases and one of the major approaches is
based on the inhibition of costimulatory immune checkpoint
receptors.

It is well established that T cells require two independent
signals in order to become fully activated. The first signal is
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obtained by TCR interaction with a peptide antigen presented
on a major histocompatibility complex (MHC) receptor on the
surface of an antigen-presenting cell (APC), while the second
signal is provided by interaction of the CD28 costimulatory
receptor with the APC-expressed CD80 or CD86 ligand. TCR-
mediated signaling in the absence of costimulation allows T
cells to interpret signals as "self" and acquire a state of anergy.
In contrast, simultaneous triggering of the TCR and the CD28
costimulatory receptor promotes the differentiation into
potent effector T cells.

An autoregulatory mechanism that prevents the constitutive
activation of the T cells is mediated by the TCR/CD28
activation-induced expression of CTLA-4, which can then
interact with CD80/CD86 on the surface of APC, and deliver an
inhibitory signal that terminate the response. This inhibitory
signal is delivered to the fully differentiated effector T cells
that have already synthesized and secreted a multitude of
proinflammatory cytokines which amplified the immune
response. Therefore, intervention with CTLA-4-dependent
signals in autoimmune patients cannot alleviate autoimmune
response.

In order to downregulate the activity of autoreactive T cells
at a very early stage, scientists designed a soluble protein
mimetic molecule, which binds CD80/86 and blocks T cell
activation. This drug, termed abatacept (Orencia) consists of
an extracellular domain of CTLA-4 fused to the Fc portion of a
human IgG1 (CTLA4Ig), and since CTLA-4 exhibits a higher
binding affinity to CD80/CD86, compared to CD28, the drug
competes with CD28, occupies CD80/CD86, prevents the
delivery of the costimulatory signal, and dampens-down
autoimmune and inflammatory responses [36]. Indeed,
abatacept was able to prevent antigen-presenting cells (APCs)
from delivering CD28-dependent costimulatory signals to T
cells [37]. Furthermore, abatacept has demonstrated long-
term efficacy in various forms of rheumatoid arthritis [38,39],
as well as other disease conditions [40,41].

It should be noted that besides, CD28, T cells express a
number of immune-checkpoint receptors with costimulatory
activity, including the CD28-family member, inducible T-cell
costimulator (ICOS), members of the tumor necrosis factor
(TNF) receptor superfamily, such as CD27, CD40, CD134
(OX40), CD137 (4-1BB), and the glucocorticoid-induced TNFR
family related gene (GITR) [18,19,42,43]. Engagement of these
receptors can potentially contribute to the T cell activation
response, and therefore these costimulatory receptors and
their cognate ligands can serve as putative targets for
immunotherapy in various autoimmune diseases.

The progress made in immunotherapy, using immune
checkpoint blocking Abs, has significantly improved the
outlook for patients with a variety of malignancies. Further
discoveries of novel immune-checkpoint receptors and
characterization of their mechanism of action will increase the
spectrum of target molecules for immunotherapy. In addition,
determination of the most effective combinatorial approaches
for particular diseases will enhance the rate of recovery. Since
the current treatments are effective only in a fraction of
cancer patients, the identification of predictive biomarkers will

help define optimal therapies for individuals and maximize the
treatment benefit. The intense future studies to optimize
immune checkpoint-targeted therapy must take into account
the drug-induced immune-related adverse events and develop
highly effective strategies to counteract the common
iatrogenic effects.
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