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Editorial
The last 15 years has seen a revolution in the development

of a drug therapy armamentarium for treating patients with
rheumatoid arthritis (RA) [1]. Prior to that general
practitioners and rheumatologists were relatively limited in
the number of agents which had shown clinical efficacy in the
treatment of RA patients. Besides the use of gold in some RA
patients, non-steroidal anti-inflammatory drugs (NSAIDs) [2],
corticosteroids [2] anti-malarial drugs [3], sulfasalazine [4],
methotrexate [4], the latter employed as either a
monotherapy or in combinations with salfasalzine and/or
hydroxychloroquine [4], and leflunomide [5] were among the
most commonly employed disease-modifying anti-rheumatic
drugs (DMARDs) for the treatment of RA. However, research
and development created a new class of biologic drugs which
are now commonly prescribed for the medical therapy of RA,
including those that have shown robust clinical efficacy
through the blockade of several forms of interleukin and/or
tumor necrosis factor-α. These developments arose after many
years of basic research; first using in vitro pre-clinical model
cell culture systems, the results of which were then extended
for evaluation of these biologic drugs in well-validated rodent
models of RA [6]. Most recently, the development of the
selective small molecule inhibitors (SMIs) of Janus Kinase-3,
exemplified by tofacitinib, have also significantly advanced the
choices that rheumatologists have for RA therapy [7]. In fact,
this novel discovery is likely to provide the impetus for further
basic research into the nature of signal transduction pathways
[8] which drive RA pathogenesis and progression in response
to the abnormally elevated levels of pro-inflammatory
cytokines, chemokines, adhesion molecules [9], and growth
factors [10], all of which have been implicated as playing
prominent roles in RA pathology.

So why does drug development for RA continue if there are
so many versatile drugs from different drug classes to choose
from for treating RA? Although there appears to be no
absolute answer to this question, ideally from a clinical
perspective the response of an RA patient to a particular
DMARD, biologic or SMI should be personalized and, in part,
this choice should be based on that individual patient’s clinical
response to a given drug. Therefore it would continue to be
problematic if an RA patient failed to clinically respond to the
available RA medicines and in the absence of continued drug
development, there could be no agents left in the drug

armamentarium for RA treatment. Thus, the search for novel
anti-RA drugs should proceed unabated and based on this
contention; there are two critical pathways relevant to RA
which are being explored in detail at this time.

Spleen tyrosine kinase (SyK)
Spleen tyrosine kinase (SyK) and ζ-chain associated

protein-70 (ZAP-70) are nonreceptor kinases that are
expressed by hemopoietic cells, including those in the spleen,
mast cells, polymorphonuclear leukocytes and macrophages
[11]. Over-expression of SyK and ZAP-70 are associated with
autoimmune disorders [12]. Thus, the finding that Cb1
ubiquitin ligase, an enzyme critical for providing a signal for
protein degradation, was a negative regulator of SyK
ubiquitination and degradation, also made the
polyubiquitination-proteasome pathway (see below) a
relevant drug target for RA [13]. Of note, Pine et al. [14]
previously showed that R788, a prodrug of the active novel SyK
inhibitor, R406, suppressed the severity of arthritis,
subchondral bone erosion, development of pannus and
synovitis in the collagen-induced arthritis (CIA) model of RA in
mice thus, spurring on the development of SyK inhibitors for
testing their efficacy in RA clinical trials. Furthermore,
inhibition of SyK by R406 resulted in suppressed levels of
synovial cytokines and serum levels of cartilage oligomeric
matrix protein. Thus, it may be feasible to use these
measurement to assess whether these proteins are sensitive
biomarkers for R406 activity on SyK. In that regard, a phase II
clinical trial employing the SyK inhibitor, fostamatinib (R406),
was shown to improve clinical responses without untoward
serious side-effects [15]. From a pathophysiological
perspective, R406 also reduced interleukin-6 (IL-6) and matrix
metalloproteinase-3 levels in the serum of RA patients
compared to the placebo arm [16].

However, the results of these studies with R406 were from
short-term clinical trials and at present it remains to be
determined whether or not clinical responses to inhibitors of
SyK can be sustained over a longer period of use to treat a
chronic disease such as RA. In fact, it is also important to point
out that R406 was eventually shown to have reduced clinical
efficacy compared with other therapeutic agents for RA and
furthermore, that R406 was not a very selective kinase
inhibitor after all.
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So where do things now stand for testing the therapy of RA
with other inhibitors of SyK? From a clinical perspective,
inhibitors of SyK activity and Bruton’s tyrosine kinase (Btk) [11]
(now termed the SyK/Btk axis) continue to demonstrate
clinical efficacy for RA [17]. Thus, at the pre-clinical
experimental level, the encouraging clinical results with R406
provided the impetus for developing new Syk inhibitors, some
of which appear to have greater specificity for SyK, such as
P505-15, than previously noted for other SyK inhibitors [18]. In
that regard, experimental treatment with P505-15 to mice
with CIA continued to lower the severity of arthritis which was
accompanied by a reduced level of cartilage destruction as
well as lower macrophage infiltration into synovial tissue [18].
In addition, incubating human RA synovial tissue ex vivo with
P505-15 also lowered IL-1β-stimulated inflammatory
responses.

A novel ATP-competitive SyK inhibitor, RO9021, has also
been evaluated in various in vitro cell culture systems [19]. The
most pertinent findings from those studies were that RO9021
suppressed B-cell receptor signaling within B-cells isolated
from human mononuclear cells and FCγR-signaling by human
mast cells as well as blocking osteoclastogenesis by mouse
bone marrow-derived macrophages. Importantly, RO9021
inhibited Type I interferon production by plasmacytoid
dendritic cells upon activation of Toll-Like Receptor-9 (TLR9)
which was specific for TLR9, since RO9021 did not inhibit TLR4
or Janus Kinase/Signal Transducers and Activators of
Transcription (JAK/STAT) signaling. Importantly, after engaging
the BCR, RO9021 also inhibited the phosphorylation of 2
downstream effector molecules dependent on SyK,
phospholipase-Cγ2 and the aforementioned, Btk. Of note,
orally administered RO9021 to mice with CIA attenuated the
severity of arthritis while also showing acceptable
pharmacokinetics and pharmacodynamics. These results
should provide the necessary pre-clinical evidence for RO9021
to go forward into RA clinical trials.

Most recently, Ferguson et al. [20] developed a novel
triazolopyridine-based SyK inhibitor, CC-509. CC-509 was
shown to be moderately selective for SyK and showed only
modest activity towards the “kinase domain receptor” (KDR)
and JAK2. Furthermore, CC-509 was more selective than R406
when assayed against other kinases.

CC-509 displayed acceptable dose-dependent efficacy in
two rodent models of immune-mediated arthritis as shown by
its capacity to significantly reduce paw swelling, as well as by
reducing in mouse CIA the tissue levels of the chemokine,
Activation Normal T Cell Expressed and Secreted (RANTES)
protein and macrophage inhibitory protein-1α (MIP-1α). These
pre-clinical results showed that CC-509 was a potent and
moderately selective SyK SMI when compared to other SyK
compounds and in that regard, CC-509 appears to be
progressing towards further evaluation in RA clinical trials.

The proteasome pathway
The 26S proteasome, a large protein complex comprised of

approximately 31 different subunits contains the 20S
proteasome which is “capped” at one or both ends by 19S

regulatory complexes that recognize ubiquitinated proteins
[21]. The 26S proteasome is localized to both nuclear and
cytoplasmic compartments of eukaryotic cells [21,22]. The
principal role of the proteasome is to regulate the cellular
function of completed proteins as well as providing a cellular
compartment for the controlled degradation of misfolded
proteins regardless of whether or not these proteins are
subject to lysosomal-mediated degradation [23]. In that
regard, the proteasome pathway has become a foremost
target for drug development designed to modulate
dysfunctional proteins in cancer [24,25] and in autoimmune
disorders [12,26]. This despite the clinical findings, which
indicated that patients with hematologic malignancies who
initially respond to the proteasome inhibitor, bortezomib,
ultimately can become “bortezomib-resistant” [27].

In the past 3 years or so, added attention has focused on the
“immunoproteasome” as a potential target for RA therapy.
Thus “immunoproteasome-specific” inhibitors have now been
identified for which their efficacy has been tested in pre-
clinical animal models with compromised immune systems
[28]. However, the extent to which inhibition of
“immunoproteasome”-mediated functions will, in addition, to
its well-characterized role in protein processing required for
MHC Class I-restricted antigen presentation, alter the
pathology of autoimmune disorders remains to be seen. Of
note, recent evidence that interferon-γ and TNF-α induced
“immunoproteasome” activation is certain to impinge on its
role as a modulator of T-lymphocyte proliferation, cytokine
production and T-helper differentiation. This makes the
“immunoproteasome” a critical novel target for RA. In that
regard, recent studies have focused on “low molecular weight
protein-7” (LMP7) which was shown to modulate
“immunoproteasome” activation [29]. The proteasome
pathway [30] also appears to regulate the synthesis and
release of the chemokine, fractalkine/CX3 CL [31], the latter
playing an important role in attracting and supporting the
migration of activated immune cells to RA synovial joints.

In closing these remarks it is prudent to offer a word of
caution to investigators, clinicians and RA patients alike
regarding the identification and development of new drug
targets for treating RA. Thus, results from prior experiences in
this arena have alerted us to the distinct possibility that
although a relevant drug target may emerge from a further
understanding of the pathophysiological networks involved in
RA, developing an agent designed to overcome a deficiency in
that target or to inhibit it, may not evolve for use in the clinic
even though the agent proves to have efficacy in cell cultures
and in well-validated animal models of RA.
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