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Abstract

Staphylococcal protein A (SpA) is a key virulence factor that
enables Staphylococcus aureus to evade host innate and
adaptive immune responses. The immunomodulatory
properties of SpA have led to a hypothesis that it may have
pharmacological applications as a treatment for
autoimmune disease. Clinical trials are underway to test
whether ultrapure SpA can be used to treat immune
thrombocytopenia and rheumatoid arthritis. Here, we
examine the potential of SpA as an innovative drug to
manage autoimmune movement disorders.
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Introduction

Staphylococcal protein A (SpA) is a protective antigen
expressed by Staphylococcus aureus that allows the bacterium
to manipulate innate and adaptive host immune responses [1-
6]. S. aureus is a commensal organism that forms part of the
microbiome in healthy humans; however, under certain
circumstances it can behave as an invasive pathogen and cause
life-threatening infections. SpA, an immunoglobulin-binding
protein, is expressed on the bacterial surface and is secreted
freely into the extracellular environment as the bacterium grows
[7]. It is expressed by all S. aureus strains. SpA binds to the Fc
portion of human and animal immunoglobulins, a defense
mechanism that provides protection from opsono-phagocytic
killing. Furthermore, SpA associates with the Fab portion of VH3-
type IgM B cell receptors [8], mediating their cross-linking and
leading to activation and clonal expansion of B lymphocytes [9]
and their subsequent apoptotic collapse (Figure 1). Recombinant
SpA (purified from Escherichia coli) does not induce B cell clonal
expansion; rather, it induces collapse of VH3 clonal B cells
directly [10,11]. It is worth noting that B lymphocytes that
express VH3-encoded immunoglobulins play specific roles in

various autoimmune diseases [12]; therefore, they may
constitute effective pharmacological targets for the treatment of
these diseases.
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Figure 1: Pharmacological effects of SpA binding to the Fab
region of B cell receptors in ITP.
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B cells and plasma cells are involved in the pathogenesis of
ITP. They are abnormally regulated and produce autoreactive
antibodies, which bind platelets and megakaryocytes, inducing
their impairment and/or phagocytic degradation in the spleen
and liver. SpA binding to the Fab regions of the B-cell receptor
promotes B-cells apoptosis and leads finally to inhibition of
autoreactive antibody production and platelet degradation.

Background

SpA has high affinity for the Fc portion of IgG. IgG antibodies
and 1gG-containing circulating immune complexes can be
selectively removed by extracorporeal exposure of a patient’s
plasma to protein A immobilized on a matrix [13]. In the 1990s,
the US Food and Drug Administration approved a medical device
containing SpA covalently linked to silica beads (PROSORBA®,
Cypress Bioscience, Inc., San Diego, CA, USA) for plasma-
adsorption treatment of patients with refractory rheumatoid
arthritis (RA) or refractory immune thrombocytopenia (ITP).
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However, the “Guidelines on the Use of Therapeutic Apheresis in
Clinical Practice” [14] state the following: “Improvement in ITP
may result indirectly from in vivo immunomodulation by the
release of protein A into the patient, which can induce targeted
B cell depletion”. Indeed, leakage of protein A from the matrix,
probably due to the activity of serum protease, is thought to
occur [13,15].

Animal Studies

SpA has been tested in animal models and has proved to be a
successful treatment for several autoimmune pathologies; for
example, SpA alleviates antibody-induced nephritis and renal
failure associated with systemic lupus erythematosus in mice
[16]. In addition, the efficacy of SpA as a therapeutic agent was
evaluated in a murine model of collagen-induced arthritis (CIA)
[17], which mimics RA in humans. SpA can co-opt circulating IgG
molecules and form small, defined hexameric complexes that
interact with monocytes, macrophages, and pre-osteoclasts.
Formation of these complexes results in Fcy receptor type I-
dependent polarization of macrophages to a regulatory
phenotype (Figure 2), thereby rendering them unresponsive to
activators such as interferon-y. The anti-inflammatory
complexes can also directly inhibit differentiation of human pre-
osteoclasts into osteoclasts “in vitro” (Figure 2). Moreover,
administration of SpA during the early stages of disease
alleviates the clinical and histologic erosive features of CIA in
mice [17].
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Figure 2: Pharmacological effects of SpA binding to the Fc
region of 1gG in RA: the anti-inflammatory role of the immune
complexes formed.
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Monocytes can differentiate into either macrophages or
osteoclasts depending on their response to specific biological
signals. These cells are a primary source of the inflammatory
environment that produce synovial and erosive lesions. Spa
binds to the Fc portion of circulating 1gG and generates small
hexameric immunoglobulin complexes (IgG,SPA), that interact
with monocytes, macrophages, and pre-osteoclasts. Formation
of these complexes results in Fcy receptor type I-dependent
polarization of macrophages to an anti-inflammatory regulatory
phenotype and inhibits pre-osteoclasts differentiation into
osteoclasts.
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Ultrapure SpA has been used to successfully treat a murine
model of ITP (PRTX-100, Protalex, Inc., Florham Park, NJ, USA)
[18]. ITP is an autoimmune bleeding disorder in which
autoantibodies or immune complexes bind to platelet surface
antigens; autoreactive T cells then target and destroy platelets
and megakaryocytes in the spleen and bone marrow. Platelet
counts in mice treated with PRTX-100 increase to normal levels
within 1-2 weeks, and none of the mice die during the
experiments [18].

Toxicology studies have also been performed in monkeys [19].
The monkey is considered to be the best predictive animal
model due to its similarity to humans with respect to SpA
binding to 1gG, B cells, and monocyte/macrophages. Weekly
intravenous doses of SpA (up to 100 pg/kg) are well-tolerated
and essentially non-toxic. The majority of treated monkeys
develop antibodies against SpA. However, no evidence of a
hypersensitivity response is observed.

Human Studies: RA And ITP

Two single-dose Phase | studies examined the safety,
pharmacokinetic, immunogenicity, and pharmacodynamic
activity of highly purified SpA in human volunteers [20]. The
majority of subjects developed detectable anti-protein A
antibodies after dosing, with no evidence of a hypersensitivity
response. A notable pharmacodynamic effect is a transient post-
dose reduction in circulating lymphocytes. SpA dosing increases
transcription of multiple genes regulated by type-1 interferons
in peripheral blood mononuclear cells; up-regulation of several
such genes correlates with the degree of lymphopenia observed
24 h after dosing. This study demonstrates for the first time that
small intravenous doses of SpA (0.3-0.45 pg/kg) are safe and
well-tolerated in humans.

Following this first toxicological study, a Phase Ib randomized,
double-blind, placebo-controlled, dose-escalation study of
ultrapure SpA (PRTX-100) and methotrexate was conducted in
patients with active RA [21]. The most common treatment-
related adverse events are nausea, muscle spasms, dizziness,
flushing, fatigue, worsening of RA, and headache. However,
most cases of drug-related RA flares are followed by prolonged
reductions in RA activity, along with improved symptoms and a
reduction in swollen joint counts. No serious adverse events are
related directly to SpA (PRTX-100), and none occur in the group
receiving the highest dose. As shown in the previous study [20],
the majority of subjects develop detectable anti-protein A
antibodies, with no evidence of a hypersensitivity response.
Although this study did not determine the highest dose of
PRTX-100 that could be administered to RA patients on a weekly
basis with acceptable toxicity, the results suggest that, at least at
the two highest doses tested, PRTX-100 has a positive effect on
disease activity. These findings warrant further Phase 2/3 clinical
trials to confirm the positive results and to verify if the reduction
of RA activity is temporary or permanent.

The promising results obtained in the mouse model of ITP
[18], and the promising preclinical data indicating that the drug
has the potential to treat ITP by reducing immune-mediated
destruction of platelets, support further investigations to
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evaluate the safety and efficacy of SpA in ITP patients. Data from
initial cohorts in two dose escalation trials (PRTX-100 at a dose
of 1 ug/kg or 3 pg/kg) [22] demonstrate an acceptable safety
profile, and support continued enrolment of higher-dose
cohorts. In one of the trials, a platelet response is observed in
one of six patients treated with the lowest dose. Clinical trials
examining higher-dose cohorts are underway [23], and updated
data from patients treated in Phase 1/2 and European Phase 1b
studies will be released in the future.

Autoimmune Movement Disorders

Our proposal to extend experimentation of SpA to the
pharmacological treatment of autoimmune movement disorders
arose from a clinical case involving a girl with Tourette syndrome
[24]. This case presented with characteristics that are similar to
those of cases of PANDAS (Pediatric Autoimmune
Neuropsychiatric  Disorders Associated with Group A
Streptococcal Infections), a clinical condition in which tics and
obsessive compulsive disorders follow acute Streptococcus
pyogenes infections [25,26]. The child presented with high titers
of anti-streptolysin O (ASO) and anti-strepto DNase (DNase-B)
antibodies and showed a positive reaction to four autoimmunity
tests (out of a panel of five) that detect the presence of
autoantibodies against brain antigens (Moleculera Labs,
Oklahoma City, OK, USA). The assays measure the titers of
antibodies against dopamine D1 and D2 receptors [27],
lysoganglioside-GM1, and beta-tubulin, in addition to antibodies
that activate calcium/calmodulin-dependent protein kinase type
Il (CaM kinase II) by binding to receptors on neural cell lines.

Microbiological monitoring indicated that the child was an
intermittent nasopharyngeal carrier of S. aureus, and that a
significant improvement in motor tics occurred during the S.
aureus colonization phase. The nostril is the main ecological
niche in which S. aureus resides, although the genetic and
environmental determinants of carrier status are not fully
understood. At any moment in time, about 20% of the general
population carries S. aureus, while ~30% are transient carries
and ~50% are non-carriers [28,29]. A complex immunological
equilibrium exists between host defense mechanisms and the
differential expression and roles of S. aureus virulence
determinants during colonization and disease [30].

This clinical case was of much interest to us because of the
observed “see-saw effect” between the host immune response
and tic expression. A significant improvement in motor tics
occurs during the S. aureus colonization phase
(nasopharyngeal-, oropharyngeal-, and gut-positive bacterial
cultures). Furthermore, the colonization phase is associated with
downregulated production of antibodies against Streptococcus
pyogenes (the etiological agent of PANDAS) and, most
importantly, of autoantibody production against D1 and D2
dopamine receptors. Dopamine is a crucial neurotransmitter
required for motor control; autoimmune reactions against its
neuronal receptors may alter central dopamine pathways and
lead to movement and neuropsychiatric disorders, especially in
childhood. After decolonization, clinical conditions revert to the
poor scores previously observed with a parallel increase of
antistreptococcal antibody production. This result was
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consistent with data from animal models showing that a pro-
inflammatory Th17 cell-associated immune response is required
for S. aureus nasal decolonization [31]. Ultimately, the
colonization phase triggers an immunomodulatory response,
whereas the clearing process triggers a pro-inflammatory
response. A sequential “uncoupling” of the anti-inflammatory
and pro-inflammatory phenomena occurs. These results confirm
data from other authors indicating that the pro-inflammatory
and anti-inflammatory properties of S. aureus are uncoupled
and can be expressed separately [32].

Several components of the S. aureus cell wall exert anti-
inflammatory effects by mediating IL-10 production in
macrophages and by downregulating pro-inflammatory cytokine
responses, thereby circumventing Th1/Th17 adaptive immune
responses during infection [33]. However, the S. aureus
virulence determinants expressed during colonization and
infection are different [34]. SpA is a virulence factor released
extracellularly at an early stage to promote both colonization
and immune evasion [3]. The beneficial downregulation of
antibody production observed during the S. aureus colonization
phase suggests, albeit indirectly, possible involvement of SpA in
the process.

Conclusion

The safety, tolerability, and pharmacokinetics of SpA in animal
models, and of ultrapure SpA (PRTX-100) in human studies,
together with encouraging preclinical data, suggest that this
protein could soon be utilized as an effective treatment for
selective autoimmune disorders such as RA and ITP. Clinical trials
are ongoing. The improvement of motor tics accompanying
reduced production of autoantibodies against D1 and D2
dopamine receptors supports our proposal to include SpA in
new clinical trials aimed at identifying innovative
pharmacological strategies for the treatment and management
of autoimmune neuropsychiatric and movement disorders.
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